176 research outputs found

    A Model for Configuration Management of Open Software Systems

    Full text link
    The article proposes a model for the configuration management of open systems. The model aims at validation of configurations against given specifications. An extension of decision graphs is proposed to express specifications. The proposed model can be used by software developers to validate their own configurations across different versions of the components, or to validate configurations that include components by third parties. The model can also be used by end-users to validate compatibility among different configurations of the same application. The proposed model is first discussed in some application scenarios and then formally defined. Moreover, a type discipline is given to formally define validation of a configuration against a system specificationComment: 13 page

    A Process Calculus for Molecular Interaction Maps

    Full text link
    We present the MIM calculus, a modeling formalism with a strong biological basis, which provides biologically-meaningful operators for representing the interaction capabilities of molecular species. The operators of the calculus are inspired by the reaction symbols used in Molecular Interaction Maps (MIMs), a diagrammatic notation used by biologists. Models of the calculus can be easily derived from MIM diagrams, for which an unambiguous and executable interpretation is thus obtained. We give a formal definition of the syntax and semantics of the MIM calculus, and we study properties of the formalism. A case study is also presented to show the use of the calculus for modeling biomolecular networks.Comment: 15 pages; 8 figures; To be published on EPTCS, proceedings of MeCBIC 200

    Fine-tuning anti-tumor immunotherapies via stochastic simulations

    Get PDF
    Background: Anti-tumor therapies aim at reducing to zero the number of tumor cells in a host within their end or, at least, aim at leaving the patient with a sufficiently small number of tumor cells so that the residual tumor can be eradicated by the immune system. Besides severe side-effects, a key problem of such therapies is finding a suitable scheduling of their administration to the patients. In this paper we study the effect of varying therapy-related parameters on the final outcome of the interplay between a tumor and the immune system.Results: This work generalizes our previous study on hybrid models of such an interplay where interleukins are modeled as a continuous variable, and the tumor and the immune system as a discrete-state continuous-time stochastic process. The hybrid model we use is obtained by modifying the corresponding deterministic model, originally proposed by Kirschner and Panetta. We consider Adoptive Cellular Immunotherapies and Interleukin-based therapies, as well as their combination. By asymptotic and transitory analyses of the corresponding deterministic model we find conditions guaranteeing tumor eradication, and we tune the parameters of the hybrid model accordingly. We then perform stochastic simulations of the hybrid model under various therapeutic settings: constant, piece-wise constant or impulsive infusion and daily or weekly delivery schedules.Conclusions: Results suggest that, in some cases, the delivery schedule may deeply impact on the therapy-induced tumor eradication time. Indeed, our model suggests that Interleukin-based therapies may not be effective for every patient, and that the piece-wise constant is the most effective delivery to stimulate the immune-response. For Adoptive Cellular Immunotherapies a metronomic delivery seems more effective, as it happens for other anti-angiogenesis therapies and chemotherapies, and the impulsive delivery seems more effective than the piece-wise constant. The expected synergistic effects have been observed when the therapies are combined. \ua9 2012 Caravagna et al.; licensee BioMed Central Ltd

    A mathematical model for the study of the impact of small commercial fishing on the biodiversity of artificial reefs

    Get PDF
    Artificial reefs are an essential tool for restoring and maintaining biodiversity in degraded marine areas. They make it possible to prevent trawling and, at the same time, create an environment suitable for restocking of several species of fishes. These submerged structures are compatible with small commercial fishing that could have a negative impact on the biodiversity in the artificial reef environment. Fishing policies should be considered in order to make fishing activities sustainable. We propose a mathematical model of artificial reefs environments. The model can be used to study the impact of small commercial fishing on the biodiversity of an artificial reef and to predict the effects of different fishing policies. The model is developed on the basis of observations made in two protected marine areas located in central Italy where artificial reefs have been realized

    Modelling the Dynamics of an Aedes albopictus Population

    Full text link
    We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito) and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS) are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls) to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Localizing Tortoise Nests by Neural Networks

    Get PDF
    The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition

    Generalized contexts for reaction systems: definition and study of dynamic causalities

    Get PDF
    Reaction systems are a qualitative formalism for the modelling of systems of biochemical reactions. In their original formulation, a reaction system executes in an environment (or context) that can supply it with new objects at each evolution step. The context drives the behaviour of a reaction system: it can provide different inputs to the system that can lead to different behaviours. In order to more faithfully deal with open systems, in this paper we propose a more powerful notion of context having not only the capability to provide objects, but also to absorb (or remove) objects at each evolution step. For such reaction systems with generalized context we investigate properties of dynamic causality by revising the previously proposed concept of formula based predictor. A formula based predictor is a Boolean formula characterising all contexts that lead to the production of a certain object after a given number of steps. In this paper, we revise the theory of formula based predictors in order to deal with reaction systems executed in a context of the new kind. As applications, we show an example of interaction between biochemical pathways and a reaction system modelling cell metabolism and respiration

    Investigating dynamic causalities in reaction systems

    Get PDF
    Reaction systems are a qualitative formalism for modeling systems of biochemical reactions characterized by the non-permanency of the elements: molecules disappear if not produced by any enabled reaction. Moreover, reaction systems execute in an environment that provides new molecules at each step. Brijder, Ehrenfeucht and Rozenberg investigated dynamic causalities in reaction systems by introducing the idea of predictors. A predictor of a molecule s, for a given n, is the set of molecules to be observed in the environment in order to determine whether s is produced or not by the system at step n. In this paper, we continue the investigation on dynamic causalities by defining an abstract interpretation framework containing three different notions of predictor: Formula based predictors, that is a propositional logic formula that precisely characterizes environments that lead to the production of s after n steps; Multi-step based predictors, that consist of n sets of molecules to be observed in the environment, one for each step; and Set based predictors, that are those proposed by Brijder, Ehrenfeucht and Rozenberg, and consist of a unique set of molecules to be observed in all steps. For each kind of predictor we define an effective operator that allows predictors to be computed for any molecule s and number of steps n. The abstract interpretation framework allows us to compare the three notions of predictor in terms of precision, to relate the three defined operators and to compute minimal predictors. We also discuss a generalization of this approach that allows predictors to be defined independently of the value of n, and a tabling approach for the practical use of predictors on reaction systems models. As an application, we use predictors, generalization and tabling to give theoretical grounds to previously obtained results on a model of gene regulation

    Towards a P Systems Normal Form Preserving Step-by-step Behavior

    Get PDF
    Starting from a compositional operational semantics of transition P Systems we have previously defined, we face the problem of developing an axiomatization that is sound and complete with respect to some behavioural equivalence. To achieve this goal, we propose to transform the systems into a unique normal form which preserves the semantics. As a first step, we introduce axioms which allow the transformation of mem- brane structures with no dissolving rules into flat membranes. We discuss the problems which arise when dissolving rules are allowed and we suggest possible solutions. We leave as future work the further step that leads to the wanted normal form
    • …
    corecore